Ben Chouchaoui, ME, BSc, MASc, PhD
Operations Manager
Windsor Industrial Development Laboratory
Some of the discretization methods being used in Computational Fluid Mechanics (CFD) are:
Finite volume method: The finite volume method (FVM) is a common approach used in CFD codes, as it has an advantage in memory usage and solution speed, especially for large problems, high Reynolds number turbulent flows, and source term dominated flows (like combustion). In the finite volume method, the governing partial differential equations (typically the Navier-Stokes equations, the mass and energy conservation equations, and the turbulence equations) are recast in a conservative form, and then solved over discrete control volumes. This discretization guarantees the conservation of fluxes through a particular control volume. The finite volume equation yields governing equations in the form,
Finite element method: The finite element method (FEM) is used in structural analysis of solids, but is also applicable to fluids. However, the FEM formulation requires special care to ensure a conservative solution. The FEM formulation has been adapted for use with fluid dynamics governing equations. Although FEM must be carefully formulated to be conservative, it is much more stable than the finite volume approach. FEM also provides more accurate solutions for smooth problems comparing to FVM. Another advantage of FEM is that it can handle complex geometries and boundary conditions. However, FEM can require more memory and has slower solution times than the FVM.
Finite difference method: The finite difference method (FDM) has historical importance and is simple to program. It is currently only used in few specialized codes, which handle complex geometry with high accuracy and efficiency by using embedded boundaries or overlapping grids (with the solution interpolated across each grid).
Spectral element method: Spectral element method is a finite element type method. It requires the mathematical problem (the partial differential equation) to be cast in a weak formulation. This is typically done by multiplying the differential equation by an arbitrary test function and integrating over the whole domain. Purely mathematically, the test functions are completely arbitrary - they belong to an infinite-dimensional function space. Clearly an infinite-dimensional function space cannot be represented on a discrete spectral element mesh; this is where the spectral element discretization begins.
Lattice Boltzmann method: The lattice Boltzmann method (LBM) with its simplified kinetic picture on a lattice provides a computationally efficient description of hydrodynamics. Unlike the traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice mesh. In this method, one works with the discrete in space and time version of the kinetic evolution equation in the Boltzmann Bhatnagar-Gross-Krook (BGK) form.
Vortex method
The vortex or Lagrangian Vortex Particle Method, is a mesh-free technique for the simulation of incompressible turbulent flows. In it, vorticity is discretized onto Lagrangian particles, these computational elements being called vortices, vortons, or vortex particles. Vortex methods were developed as a grid-free method not limited by smoothing associated with grid-based methods. Vortex methods require means for rapidly computing velocities from vortex elements – in other words they require the solution to a particular form of the N-body problem (in which the motion of N objects is tied to their mutual influences). This breakthrough came in the 1980s with the development of the Barnes-Hut and fast multipole method (FMM) algorithms. These paved the way to practical computation of the velocities from the vortex elements.
Monday – Friday
8:00 am – 5:00 pm
Copyright of WIDL Inc. - All Rights Reserved
Disclaimer - Dr. Chouchaoui and WIDL do not do engineering services regulated by PEO (Professional Engineers Ontario). If you need services as such please contact PEO for referrals to an engineer who does such.